On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation
نویسندگان
چکیده
We study the semiclassical limit for the following system of Maxwell-Schrr odinger equations: waves for the nonlinear Schrr odinger equation interacting with the electrostatic eld: the unknowns v and represent the wave function associated to the particle and the electric potential respectively. By using localized energy method, we construct a family of positive radially symmetric bound states (v ~ ; ~) such that v ~ concentrates around a sphere fjxj = s 0 g when ~ ! 0.
منابع مشابه
Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials
Abstract. For singularly perturbed Schrödinger equations with decaying potentials at infinity we construct semiclassical states of a critical frequency concentrating on spheres near zeroes of the potentials. The results generalize some recent work of Ambrosetti–Malchiodi–Ni [3] which gives solutions concentrating on spheres where the potential is positive. The solutions we obtain exhibit differ...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملModified Wave Operators for Maxwell-Schrödinger Equations in Three Space Dimensions
We study the scattering theory for the coupled Maxwell-Schrödinger equation under the Coulomb gauge condition in three space dimensions. This equation belongs to the borderline between the short range case and the long range one. We construct modified wave operators for that equation for small scattered states with no restriction on the support of the Fourier transform of them.
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2005